INTRODUCTION
The Guillain Barre Syndrome (GBS) is an acute immune-mediated progressive polyneuropathy having an acute monophasic illness leading to paralysis. The clinical features are progressive ascending symmetrical muscle weakness that may lead to respiratory failure. Diagnosis is based upon clinical presentation and is supported by a lumbar puncture with CSF analysis demonstrating albumin-cytological dissociation, and electrophysiological studies. Our patient presented to us with progressive ascending paralysis after receiving COVID 19 vaccine.

Key Words: COVID-19, Vaccine, Guillain Barre syndrome, GBS, COVID-19 Vaccine, AIDP, Moderna, mRNA vaccine

CASE PRESENTATION
A 28-years-old male, non-smoker, with no known co-morbidities presented to us in the emergency department of Shaheed Zulfiquar Ali Bhutto Medical University/ PIMS, Pakistan complaining of progressive bilateral lower limb weakness for the past six days. He previously had an excellent functional status and denied any history of recent trauma, fever, upper respiratory or gastrointestinal tract illness. There was no weight loss, night sweats or change in bowel habits. He had received first dose of COVID-19 vaccine (Moderna) six days prior to his presentation.

On physical examination, the patient was hemodynamically stable, afebrile, having no signs of respiratory distress. Neurological examination showed Glasgow Coma Scale (GCS) of 15/15, pupils were bilateral equal and reactive, cranial nerves and extra-ocular movements were intact. Bulbar weakness was absent. Motor strength according to Medical Research Council Grade was 3/5 proximally, +3/5 distally in upper limbs and 2/5 proximally and 1/5 distally in lower limbs. The patient was not able to walk and maintaining sitting posture on his own. Deep tendon reflexes were globally absent, and planters were bilateral equivocal. Pin prick and joint position sensations were intact. There was no nystagmus or dysdiadochokinesia.

Complete blood count showed mild leukocytosis of 11.4×10³ /µL (reference range 4-10×10³ /µL) with neutrophilic predominance, and normal hemoglobin and platelet count. His serum electrolyte including serum potassium, renal, hepatic and coagulation profile and muscle enzymes were normal. C-reactive
protein was negative. COVID-19 PCR from a nasopharyngeal swab was negative. Cerebrospinal fluid examination to look for albumin cytological dissociation was in plan but patient refused to give consent despite counseling. Nerve Conduction Study (NCS) showed low amplitude with prolong latency and low conduction velocity in right and left median and ulnar motor nerves. No response was shown in right sensory median and right and left sensory ulnar and peroneal motor nerve. Low amplitude, prolong latency and reduced conduction velocity in right and left tibial motor nerve. Right median and ulnar nerves F waves showed no response. Right sural nerve was not recordable. The graphs are presented in Figure 1. The electrophysiological findings were consistent with Acute Inflammatory Demyelinating Polyneuropathy (AIDP) variant of GB syndrome.
Figure 1: Graphs of detailed nerve conduction studies of the patient
Based on the Brighton criteria for case definition of Guillain-Barre syndrome, diagnosis was established. The patient showed no signs of respiratory distress and autonomic dysfunction throughout his stay at hospital. Treatment options Intravenous Immunoglobulins (IVIGs) versus Plasma Exchange (PE) along with risks and benefits and cost effectiveness were explained to patient in detail. He opted for Plasma Exchange and underwent 5 sessions of PE on alternate days. He showed signs of improvement in ambulation and overall function. He tolerated Plasma Exchange sessions without any adverse side effects. As he remained stable and responded well to the treatment, he was discharged and referred to an outpatient rehabilitation facility two weeks after admission. In rehabilitation facility he received extensive physical and occupational therapy. After four weeks, he followed up in Neurology OPD, where physical examination showed the marked recovery of muscle power (grade +4/5 in upper limbs and 4/5 in the lower limbs).

DISCUSSION
We report this case to spread awareness about the possible association of GBS with COVID-19 vaccination. The underlying mechanisms for GBS with COVID-19 vaccines and other vaccines at this point is postulated to be molecular mimicry that results in cross reactivity of immune response to neuronal and myelin elements of peripheral nervous system. There is growing evidence that cross reactivity of infective agent epitopes and peripheral nerve gangliosides may play a role. Several other antecedent events including surgery, cancer, pregnancy, autoimmune disease, and vaccinations(swine flu vaccine of 1976) has been linked to GBS. Review of available data for GBS after COVID vaccines showed that incidence of GBS after mRNA vaccines is 1.3 per 100000 person-years which is almost similar to general population data however the Janssen vaccine which wasn’t used in Pakistan has higher incidence of GBS than others that is 32.4 per 100000 person-years. A review of vaccine associated GBS published in 2008 before COVID-19 pandemic reported that most cases were actually temporal associations and not causations and that the strongest association was with swine flu vaccine.

First reported case of GBS in Malta was temporally related to Vaxzevria vaccination. Other two cases of GBS been reported related to ChAdOx1-S/nCoV-19 vaccine in England and India. Another case was reported in Qatar secondary to Pfizer vaccination. As of October 2021, 2163 cases of GBS and its variants (including 46 cases of Miller-Fisher syndrome and 13 cases of Bickerstaff's encephalitis) have been reported after vaccination with the ChAdOx1 nCoV-19 (AstraZeneca) or the two messenger RNA-based COVID-19 vaccines.

CONCLUSION
Before establishing the conclusion, further studies are required. Vaccinations leading to reduction in morbidity and mortality outweigh the risk of reported adverse events. However, before stating or eliminating a causal relationship between COVID-19 vaccine and GBS, large scale studies are required.
REFERENCES


Conflict of interest: Author declares no conflict of interest.
Funding disclosure: Nil

Author’s contribution:
Soban Khan; data collection, data analysis, manuscript writing, manuscript review
Mariam Khalil; data collection, data analysis, manuscript writing, manuscript review
Zaid Waqar; data collection, data analysis, manuscript writing, manuscript review
Sajid Khan; manuscript writing, manuscript review
Zakir Jan; manuscript writing, manuscript review

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial 2.0 Generic License.